استخراج ویژگیهای سیگنال eeg برای تخمین سطح هوشیاری با استفاده از تبدیل موجک

پایان نامه
  • وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت مدرس
  • نویسنده
  • استاد راهنما
  • تعداد صفحات: ۱۵ صفحه ی اول
  • سال انتشار 1379
چکیده

الکتروانسفالوگرام بیانگر فعالیتهای الکتریکی مغز است و حاوی اطلاعات غنی در باره عملکرد و وضعیت مغز می باشد. همچنین مشخص شده است که اثر داروهای مختلف روی سیستم اعصاب مرکزی تغییرات مشخصی در سیگنال eeg ایجاد می کند. از طرفی دیگر بررسی های بعمل آمده در رابطه بین eeg و میزان هوشیاری بیانگر توانایی eeg در تحلیل سطح هوشیاری افراد می باشد. روشهای مختلفی برای تحلیل و کمی کردن eeg ارائه شده است که غالبا" مبتنی بر تحلیل فوریه و مشتقات طیفی سیگنال هستند. برخی روشهای پارامتری نظیر ar نیز در زمینه کمی کردن eeg بمنظور تخمین یطح هوشیاری به کار رفته اند. در اکثر روشهای فوق فرض بر ایستا بودن سیگنال می باشد. از طرفی، در تکنیکهای تحلیل طیف براساس تبدیل فوریه دقت زمانی و فرکانسی در تضاد هستند. از اینرو در مورد این سیگنال بهتر است از روشهای زمان- فرکانس استفاده شود. در این تحقیق از تبدیل موجک برای استخراج ویژگیهای سیگنال eeg استفاده شده است و توانایی این ویژگی ها در طبقه بندی و خوشه یابی سطوح مختلف هوشیاری بررسی شده است . کار طبقه بندی و خوشه یابی با استفاده از ویژگیهای طیفی و روش پارامتری ar انجام گرفته و نتایج مقایسه شده اند. نتایج نشان می دهد که ویژگی های موجک برای تخمین سطح هوشیاری از توانایی بالائی برخوردارند.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

شناسایی خودکار مراحل خواب از سیگنال EEG تک‌کاناله با استفاده از تبدیل موجک گسسته و مدل ترکیبی الگوریتم تبرید و شبکه‌ی عصبی

در سال‌های اخیر، استفاده از روشی هوشمند برای تشخیص خودکار مراحل خواب در کاربردهای پزشکی، برای کاهش حجم کار پزشکان در تجزیه و تحلیل داده‌های خواب از طریق بازرسی بصری، یکی از چالش‌های مهم به حساب می‌آید. در این مقاله، الگوریتمی مبتنی بر EEG تک‌کاناله برای شناسایی خودکار مراحل خواب، با استفاده از تبدیل موجک گسسته و مدل ترکیبی الگوریتم تبرید و شبکه‌ی عصبی ارائه می‌شود. سیگنال با استفاده از تبدیل مو...

متن کامل

شناسایی خودکار مراحل خواب از سیگنال EEG تک کاناله با استفاده از تبدیل موجک گسسته و مدل ترکیبی الگوریتم کلونی مورچگان و شبکه عصبی مبتنی بر طبقه‌بند RUSBoost

طبقه‌بندی کردن خودکار مراحل خواب به منظور تشخیص دادن به موقع اختلالات و مطالعات مرتبط با خواب امری ضروری است. در این مقاله الگوریتمی مبتنی بر EEG تک کاناله برای شناسایی خودکار مراحل خواب با استفاده از تبدیل موجک گسسته و مدل ترکیبی الگوریتم کلونی مورچگان و نیز شبکه عصبی مبتنی بر طبقه‌بند RUSBoost ارائه می‌شود. سیگنال با استفاده از تبدیل موجک گسسته به 4 سطح تجزیه‌ شده و ویژگی‌های آماری از هر یک ا...

متن کامل

ارزیابی قابلیت ویژگی‌های زمانی، فرکانسی سیگنال EEG و ویژگی‌های مستخرج از تبدیل بسته موجک در تفکیک مراحل مختلف خواب با استفاده از شبکه SOM

سیگنال‌های زیستی مختلف شامل EEG، EOGو EMGبه منظور تشخیص اختلالات خواب در آزمایشگاه‌های خواب ثبت می‌شوند. تحلیل اطلاعات ثبت شده در زمان خواب به‌وسیله متخصص خواب، به صورت شهودی انجام می‌شود. طبقه‌بندی شهودی مراحل خواب به دلیل طولانی بودن ثبت‌ها، کار زمان‌بر و خسته کننده‌ای است. تحلیل خودکار خواب می‌تواند این امر را تسهیل کند. مهم‌تر...

متن کامل

تشخیص حملات صرع با استفاده از تخمین طیف سیگنال eeg

در این پایان نامه یک روش جدید با استفاده از تخمین طیف مبتنی بر بردارهای ویژه و شبکه عصبی برای شناسایی حملات صرع معرفی شده است. در این روش سیگنال های eeg به سه دسته ذیل تقسیم بندی می شوند: (1) سیگنال شخص سالم (healthy) (2) سیگنال شخص مبتلا به صرع در غیاب حمله (inter-ictal) (3)سیگنال شخص مبتلا به صرع حین حمله (ictal). روش ارایه شده شامل دو نوع الگوریتم است. در الگوریتم اول، طیف سیگنال eeg با استف...

15 صفحه اول

بررسی ارتباطات مغزی مؤثر به روش تابع انتقال جهت‌دار برای ترکیب‌های مختلف توجه و هوشیاری بر‌اساس سیگنال EEG

هدف این مقاله، بررسی ارتباطات مؤثر مغزی بر‌اساس روش تابع انتقال جهت­دار (DTF) است. این ارتباطات برای داده­های ثبت‌شده، از ترکیب حالت­های توجه و هوشیاری، که چهار دستة توجه-هوشیاری، توجه-عدم هوشیاری، عدم توجه-هوشیاری و عدم توجه-عدم هوشیاری را ایجاد کرده­اند، به‌دست آمدند. از روی ماتریس­های به‌دست­آمده برای هر دسته، شاخص­هایی مرسوم در حوزة DTF، معرفی و محاسبه شدند. سپس شاخص­های این چهار دسته، برای...

متن کامل

ارزیابی قابلیت ویژگی های زمانی، فرکانسی سیگنال eeg و ویژگی های مستخرج از تبدیل بسته موجک در تفکیک مراحل مختلف خواب با استفاده از شبکه som

سیگنال های زیستی مختلف شامل eeg، eogو emgبه منظور تشخیص اختلالات خواب در آزمایشگاه های خواب ثبت می شوند. تحلیل اطلاعات ثبت شده در زمان خواب به وسیله متخصص خواب، به صورت شهودی انجام می شود. طبقه بندی شهودی مراحل خواب به دلیل طولانی بودن ثبت ها، کار زمان بر و خسته کننده ای است. تحلیل خودکار خواب می تواند این امر را تسهیل کند. مهم ترین گام برای طبقه بندی خودکار مراحل خواب، استخراج ویژگی های مناسب ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت مدرس

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023